

Some Classes of Operators of Order 'N' on Hilbert Space and Complex Hilbert Space

K. M. Manikandan¹, P. Suganya²

¹Assistant Professor, Department of Mathematics,Bharathiar University/Dr.SNS.Rajalakshmi college of Arts & Science,Coimbatore,Tamilnadu, India

²Research Scholar Department of Mathematics,Bharathiar University/Dr.SNS.Rajalakshmi college of Arts & Science,Coimbatore,Tamilnadu, India

ABSTRACT

In this paper we introduce n-power hypo-normal operator of order-n, n-power quasi-normal operator of order-n, quasi parahyponormal operator of order-n on a Hilbert space H. we give some properties of these operators. **Keywords:** n-power hypo-normal, n-power quasi-normal, parahyponormal ,quasi parahyponormal operator.

I. INTRODUCTION

SECTION 1.0

Let B(H) denotes the algebra of all bounded

linear operators acting on a complex Hilbert space H. An operator $T \in B(H)$ is said to be self adjoint if $T^* = T$, isometry if $T^*T = I$. The operator $T \in B(H)$ is called normal if $TT^* = T^*T$, Quasinormal if, $T(T^*T) =$ $(T^*T)T$. An operator T on H is called hyponormal if $TT^* \leq T^*T$.

SECTION 2.0

In this section we introduce n-power quasi-normal operator of order-n.

Definition:2.1 n-power Quasi-normal operator of order-n

An operator T is called n-power Quasi-normal operator of order-n if,

$$T^n(T^{*n}T) = (T^{*n}T)T^n$$

Theorem: 2.2

Let $T_1, T_2, ..., T_k$ be n-power quasi-normal operators of order-n in B(H). Then the direct sum $(T_1 \oplus T_2 \oplus ... \oplus T_k)$ and tensor product $(T_1 \otimes T_2 \otimes ... \otimes T_k)$ are n-power quasi-normal operators of order-n.

Proof:

From the definition of n-power quasi-normal operators of order-n,we have

$$T^n(T^{*n}T) = (T^{*n}T)T^n$$

 $(T_1 \oplus T_2 \oplus ... \oplus T_k)^n [(T_1 \oplus T_2 \oplus ... \oplus T_k)^{*n} (T_1 \oplus$ $T_2 \oplus ... \oplus T_k$] = $(T_1^n \oplus T_2^n \oplus ... \oplus T_k^n)[(T_1^{*n} \oplus$ $T_2^{*n} \oplus \ldots \oplus T_k^{*n}$ $(T_1 \oplus T_2 \oplus \ldots \oplus T_k)$] $(T_1^n \oplus T_2^n \oplus \dots \oplus T_k^n)[(T_1^{*n}T_1 \oplus T_2^{*n}T_2 \oplus$ $\ldots \oplus T_k^{*n}T_k$ $=T_1^{n}(T_1^{*n}T_1) \oplus T_2^{n}(T_2^{*n}T_2) \oplus ... \oplus T_k^{n}(T_k^{*n}T_k)$ Since, $T_1, T_2, ..., T_k$ be n-power quasi-normal operator of order-n,then $=(T_1^{*n}T_1)T_1^n \oplus (T_2^{*n}T_2)T_2^n \oplus ... \oplus (T_k^{*n}T_k)T_k^n$ $[(T_1^{*n} \oplus T_2^{*n} \oplus \dots \oplus T_k^{*n}) (T_1 \oplus T_2 \oplus \dots \oplus$ T_k] $(T_1^n \oplus T_2^n \oplus ... \oplus T_k^n)$ $[(T_1 \oplus T_2 \oplus ... \oplus T_k)^{*n}(T_1 \oplus T_2 \oplus ... \oplus T_k)]$ $(T_1 \oplus T_2 \oplus ... \oplus T_k)^n$ Also $(T_1 \otimes T_2 \otimes \dots \otimes T_k)^n [(T_1 \otimes T_2 \otimes \dots \otimes T_k)^{*n} (T_1 \otimes T_2 \otimes \dots \otimes T_k)]$ $=(T_1^n \otimes T_2^n \otimes \dots \otimes T_k^n)[(T_1^{*n} \otimes T_2^{*n} \otimes \dots \otimes T_k^{*n})]$ $(T_1 \otimes T_2 \otimes \dots \otimes T_k)$] $=(T_1^n \otimes T_2^n \otimes \dots \otimes T_k^n)$ $[(T_1^{*n}T_1 \otimes T_2^{*n}T_2 \otimes \dots \otimes T_k^{*n}T_k)]$ $=T_1^{n}(T_1^{*n}T_1)\otimes T_2^{n}(T_2^{*n}T_2)\otimes ...\otimes T_k^{n}(T_k^{*n}T_k)$ Since, $T_1, T_2, ..., T_k$ be n-power quasi-normal operator of order-n.then $=(T_1^{*n}T_1)T_1^{n}\otimes(T_2^{*n}T_2)T_2^{n}\otimes...\otimes(T_k^{*n}T_k)T_k^{n}$ $= [(T_1^{*n} \otimes T_2^{*n} \otimes \dots \otimes T_k^{*n}) (T_1 \otimes T_2 \otimes \dots \otimes T_k)]$ $(T_1^n \otimes T_2^n \otimes \dots \otimes T_k^n)$ $[(T_1 \otimes T_2 \otimes \dots \otimes T_k)^{*n} (T_1 \otimes T_2 \otimes \dots \otimes T_k)]$

 $(T_1 \otimes T_2 \otimes \dots \otimes T_k)^n$

Section 3.0:

In this section we introduce n-power Hypo-normal operator of order-n.

Definition: 3.1 n-power Hypo-normal operator of order-n

An operator T is called n-power Hypo-normal operator of order-n if,

 $T^{*n}T^n \ge T^nT^{*n}$

Theorem 3.2:

If S&T are doubly commuting n-power hypo-normal operators of order -n and $ST^*=T^*S$, then ST is an n-power hypo-normal operator of order-n.

Proof:

Since ST=TS

$$\Rightarrow S^{n}T^{n} = (ST)^{n} \text{ and } ST^{*} = T^{*}S$$

$$\Rightarrow S^{n}T^{*} = T^{*}S^{n} \qquad [\because ST^{*}$$

$$= T^{*}S]$$

$$\Rightarrow TS^{*}$$

$$= S^{*}T$$

$$\Rightarrow T^{n}S^{*}$$

$$= S^{*}T^{n}$$
We have, $(ST)^{*n}(ST)^{n} = T^{*n}S^{*n}S^{n}T^{n}$

$$=T^{*n}S^{n}S^{*n}T^{n}$$

$$=S^{n}T^{*n}T^{n}S^{*n}$$

$$\leq S^{n}T^{n}T^{*n}S^{*n}$$
Hence, $(ST)^{*n}(ST)^{n} \leq (ST)^{n}(ST)^{*n}$

Then ST is an n-power hypo-normal operator of order-n.

Section 4.0:

In this section we introduce parahyponormal operator of order-n.

Definition: 4.1 Parahyponormal operator of order-n

An operator $T \epsilon B(H)$ is said to be parahyponormal operator of order-n ,if

$$||Tx||^2 \le ||TT^{*n}x||$$

Theorem:4.2

If $S, T \in B(H)$ are doubly commuting parahyponormal operators of order-n and $ST^{*n} = T^{*n}S$ then ST is parahyponormal operator of order-n.

Proof:

 $S^{n}T^{n} = (ST)^{n} [:: ST = TS]$ $ST^{*n} = T^{*n}S, S^{n}T^{*n} = T^{*n}S^{n} [:: ST^{*} = T^{*}S]$ Now, $ST^{*n} = T^{*n}S$

We have to prove, $(TT^{*n})^2 - 2\lambda(T^{*n}T) + \lambda^2 \ge 0$

 $\Rightarrow ((ST)(ST)^{*n})^2 - 2\lambda((ST)^{*n}(ST)) + \lambda^2 \ge 0$ $\Rightarrow ((ST)(T^{*n}S^{*n}))^2 - 2\lambda((T^{*n}S^{*n})(ST)) + \lambda^2 I \ge 0$ $\Rightarrow ((T^{*n}T)(SS^{*n}))^2 - 2\lambda((T^{*n}T)(S^{*n}S)) + \lambda^2 I \ge 0$ $\Rightarrow SS^{*n} = I, S^{*n}S = I$ $\Rightarrow (TT^{*n})^2 - 2\lambda(T^{*n}T) + \lambda^2 \ge 0.$ Hence,ST is parahyponormal operator of order-n.

Theorem:4.3

If a parahyponormal operator of order-n doubly commutes with a hyponormal operator S,then product TS is parahyponormal operator of order-n.

Proof:

Let E(t) be the resolution of the identity for the selfadjoint operator S^*S .

Thus $T^{*n}T$ and $T^{*2n}T^2$ both doubly commute with every E(t).

Since S is hyponormal.we have,

$$\begin{split} S^{*n}S &\geq SS^{*n} \\ & [(TS)^2(T^{*n}S^{*n})^2]^2 - 2\lambda[TS(TS)^{*n}] + \lambda^2 \\ &= [T^2S^2(S^{*2n}T^{*2n})]^2 - 2\lambda[TS(S^{*n}T^{*n})] + \lambda^2 \\ &= [(T^{*2n}T^2)(S^{*2n}S^2)]^2 - 2\lambda[(T^{*n}T)(S^{*n}S)] + \lambda^2 \\ &\geq [(T^{*2n}T^2)(S^{*2n}S^2)]^2 - 2\lambda[(T^{*n}T)(S^{*n}S)] + \lambda^2 \\ &= (T^{*2n}T^2)^2 - 2\lambda[(T^{*n}T)(S^{*n}S)] + \lambda^2 \\ &= [S^{*n}S = I] \\ &\geq 0. \end{split}$$

Thus T is parahyponormal operator of order-n.

Section 5.0:

In this section we introduce quasi parahyponormal operator of order-n.

Definition: 4.1 Quasi-Parahyponormal operator of order-n

An operator $T\epsilon B(H)$ is said to be quasi parahyponormal operator of order-n , if

 $\|TT^{*n}x\|^2 \le \|T^2T^{*2n}x\|$

Theorem 5.2:

Let $T \in B(H)$ be a quasi parahyponormal operator of order-n.If T commutes with isometric operator S then TS is quasi parahyponormal operator of order-n.

Proof:

Let A=TS for all real number λ .

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

$$\begin{aligned} & (A^2 A^{*2n})^2 + 2\lambda (AA^{*n})^2 + \lambda^2 \geq 0. \\ & [(TS)^2 (TS)^{*2n}]^2 + 2\lambda [(TS) (TS)^{*n}]^2 + \lambda^2 \geq 0. \end{aligned}$$

$$\begin{split} [(T^2S^2)(S^{*2n}T^{*2n})]^2 + 2\lambda [(TS)(S^{*n}T^{*n})]^2 + \lambda^2 \geq 0. \\ \begin{bmatrix} \because TS = ST \\ S^*S = I \end{bmatrix} \end{split}$$

$$\begin{split} & [(S^2T^2)(S^{*2n}T^{*2n})]^2 + 2\lambda[(ST)(S^{*n}T^{*n})]^2 + \lambda^2 \geq 0. \\ & (T^2T^{*2n})^2 + 2\lambda(TT^{*n})^2 + \lambda^2 \geq 0. \end{split}$$

Therefore, A is quasi parahyponormal operator of order-n.

Theorem 5.3:

If a quasi parahyponormal operator of order-n T commutes with an isometric operator S then $\frac{T}{s}$ is quasi parahyponormal operator of order-n.

Proof:

Let $A = \frac{T}{S'}$

We have for any real number λ . $(A^{2}A^{*2n})^{2} + 2\lambda(AA^{*n})^{2} + \lambda^{2} \ge 0.$ $[\left(\frac{T}{S}\right)^{2} \left(\frac{T}{S}\right)^{*2n}]^{2} + 2\lambda[\left(\frac{T}{S}\right) \left(\frac{T}{S}\right)^{*n}]^{2} + \lambda^{2}I \ge 0.$ $[(T^{2}S^{-2})(T^{*2n}S^{-*2n})]^{2} + 2\lambda[TS^{-1})(T^{*n}S^{-*n})]^{2} + \lambda^{2}I \ge 0.$ $[\because T^{2}S^{2} = S^{2}T^{2}$ and $S^{2}S^{-*2n} = I, SS^{-*n} = I]$ $[(S^{-2}T^{2})(S^{-*2n}T^{*2n})]^{2} + 2\lambda[(S^{-1}T)(S^{-*n}T^{*n})]^{2} + \lambda^{2}I \ge 0.$ $(T^{2}T^{*2n})^{2} + 2\lambda(TT^{*n})^{2} + \lambda^{2}I \ge 0.$ A is quasi parahyponormal of order-n.

II. REFERENCES

- A.A.S.Jibril.On n-power normal operators, The journal for Science and Engener-ing.volume 33, Number 2A. (2008)
- [2]. A.Bala.A note on quasi-normal operators.Indian J.pue appl,Math,8,(1977),463-65.
- [3]. Chen,Yin,(2004)"On the Putnam-Fuglede Theorem".IJMMS,http:ijmms.hindawi.com,53,p p:2834.
- [4]. Dr.T.Veluchamy,K.M.Manikandan,T.Ramesh,S olving n power class(Q)operators usingMATLAB,IOSR Journalof mathematics.Volume 10,Issue 2 Ver.II(Mar-Apr.2014)

- [5]. J.Conway,A course in functional analysis,Second Edition,Spring-Verlag,New york,1990.
- [6]. Kreyszig Erwin,(1978)"Introductory Functional Analysis with Applications".New york Santa Barbara LondonSydney Toronto.
- [7]. Laith K.Shaakir,Saad S.Marai.,Quasi-normal operator of order-n.Tikrit Jour-nal of pure science 20 (4) 2015.
- [8]. On the class of n-power quasi-normal operators on Hilbert space.Bulletin of mathematical analysis and applications.ISSN:1821-1291,Volume 3 issue 2(2011).
- [9]. On n-power -hyponormal operators,Global Journal of pure and applied math-ematics.ISSN 0973-1768 Volume 12,number 1(2016),pp.473-479.
- [10]. On parahyponormal and quasi parahyponormal operators,Sivakumar N,Dhivya.G(2016)
- [11]. S.A.Alzuraiqi,A.B.Patel,On n-normal operators,general Mathematics notes,Vol 1,No 2(2010),61-73.